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Abstract

This article presents a method to incorporate a deformation prior in image recon-
struction via the formalism of deformation modules. The framework of deformation
modules allows to build diffeomorphic deformations that satisfy a given structure. The
idea is to register a template image against the indirectly observed data via a mod-
ular deformation, incorporating this way the deformation prior in the reconstruction
method. We show that this is a well-defined regularization method (proving existence,
stability and convergence) and present numerical examples of reconstruction from 2-D
tomographic simulations and partially-observed images.

1 Introduction

For many imaging techniques, the acquisition time is relatively long. For instance in
computed tomography targeting the torso, the acquisition takes several minutes and then
the patient breathes during the acquisition. Using static reconstruction methods leads to
the appearance of motion artefacts which can prevent from identifying some structures or,
on the contrary, creates false ones. The solution that is used in clinic for torso computed
tomography is to use “gated data”: the respiratory rhythm of the patient is recorded
simultaneously, and only the data acquired at a specific respiratory state are used for
the reconstruction. In order to be able to use all the available data, it is necessary to
incorporate a temporal component in the reconstruction method [23, 25, 26, 35].

In order to do so, a common strategy [2, 11, 13, 14, 15, 21, 22, 27, 33, 34, 40] is to
reconstruct one initial image I0 and a trajectory of deformations t 7→ ϕt= ϕ(t, ·) such that
for each time t the image ϕt · I0 (deformation of I0 by ϕt) matches the observed data.
Then the framework has two intertwined components, estimation of I0 and estimation of
t 7→ ϕt, that can be alternatively performed in an iterative optimization scheme. This
article concentrates on the second step: estimating the deformation trajectory t 7→ ϕt,
given observed data and an initial template image I0. A central point is to define the
deformation model, i.e. the set of deformations that are considered and their parametriza-
tion. In [14] and [22] for instance, the deformation model is built via the LDDMM (Large
Deformation Metric mapping) framework [8], leading to good numerical and theoreti-
cal results. However, as illustrated in the following, this deformation model corresponds
to unstructured deformations in the sense that it is not possible to incorporate a prior
knowledge about the type of deformations that can occur (see Section 2.3). As a conse-
quence, in some cases the estimated deformation is not intuitively satisfying but there is no
possibility with such an unstructured-deformation framework to enforce a more intuitive
solution. Several frameworks allow to incorporate particular priors in deformation mod-
els [7, 6, 16, 28, 32, 36, 37, 38, 42] so that they are adapted to specific situations. The goal
of this article is to show how a generic prior on the set of deformations can be incorporated
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via the notion of deformation modules [18] so that only the desired solutions are used to
reconstruct an image from the observed data and the initial template. For instance in the
case of biological images, this framework would ensure that only the deformations that are
possible from a biological point of view are considered. The interest of the deformation
module framework is that it encompasses many previous approaches and requires very few
conditions on the constraints that can be incorporated in the deformation model.

We recall the notion of deformation modules and build a particular class of deformation
modules called constrained translations generator (CTG) deformation modules that can be
easily built and used. We present how geodesic trajectories can be used to reconstruct an
image from indirect observations and a given initial template, and then we show that this
strategy is a well-defined regularization method to solve inverse problems by proving the
existence of solutions as well as their stability and convergence. Finally we present several
numerical examples, using our framework to reconstruct images from 2-D simulations of
two different natures: tomographic data (obtained via the 2-D Radon transform) and
partial observation (obtained by restricting the image on a small window).

2 Background

2.1 Inverse problem

Let Ω ⊂ Rn be a fixed open bounded domain (with n = 2 or 3) and X := L2(Ω,R) be
a space of grey scale images on Ω. The principle of inverse problem is to reconstruct an
image I∈X from an indirect observation d∈Y the data space. More precisely, we suppose
that there is a ground truth image Itruth in X and an operator T : X 7→ Y such that the
observed data is d = T (Itruth) + ε where ε is some noise. The goal is to build an image

I such that T (I) approaches d, i.e. to minimize the quantity D
(
T (I), d

)
(where D is a

distance on the data space Y ). In general there is not a unique image I minimizing it and
a general strategy is to define a regularity function R : X 7→ R≥0 and then to minimize

I ∈ X 7→ D
(
T (I), d

)
+R(I).

2.2 Inverse problem with an image prior

If a reference image I0 is known to be close (in a certain sense to specify) to the
image to reconstruct, this prior knowledge can be incorporated in the reconstruction by
defining a regularity function R that depends on the reference image I0. A first idea is to
consider R(I) = |I − I0|2X where | · |X is the L2-norm. However this norm might not be
appropriate as it depends on point-wise comparison of images: in section 5 we show an
example where this regularization is not satisfying. In [1, 9, 24], the authors use the mass-
transport penalization between I and I0. This approach leads to good numerical results
but assumes that the grey-level on images can be modelled as a mass: the penalization of
the displacement of a given area depends on its grey-scale value, which is not necessarily
relevant in practice. Other frameworks, as developed for instance in [14, 22, 31], consist
in defining the regularity function R on a space of deformations so that the functional

to minimize is ϕ 7→ D
(
T (ϕ · I0), d

)
+ R(ϕ) where ϕ stands for a deformation. These

frameworks are based on the idea of image registration. Various theoretical and numerical
frameworks were developed in order to perform image registration [8, 10, 20, 29, 41]. The
one used in [14, 22, 31] is the Large Deformation Metric Mapping one (LDDMM, see [8, 41])
where deformations are diffeomorphisms built from vector fields. Following [31] we will
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denote such approaches by indirect registration. As this approach is close to the one
that we propose in the following, we detail it in the next section. The main idea here
(in opposition to the mass transport framework) is that the image I can be seen as a
geometric transformation of the reference image I0: it can for instance be relevant in the
case of the motion of a patient. The framework that we propose is based on this idea
but uses an additional prior on the nature of the motion: we will suppose that there are
known constraints on the possible motions and we incorporate them in the reconstruction
method via the notion of deformation modules.

2.3 Large deformations and indirect registration

We detail here the framework of indirect registration with large deformations as developed
in [14, 22]. Let us define the group Diff`0(Ω) of C`-diffeomorphisms that tend to Identity
at the boundary of Ω. It is an open set of Id+C`0(Ω,Rn) where C`0(Ω,Rn) is the space of
vector fields ` times continuously differentiable, supported on Ω, with derivatives tending

to zero at the boundary. It is equipped with the norm |v|` = sup{|∂
`1+···+`dv(x)

∂x
`1
1 ...x

`d
d

| | x ∈

Rd, (`1, . . . , `d) ∈ Nd, `1 + · · · + `d ≤ `} such that it is a Banach space. It is necessary
to define how these diffeomorphisms can transform an image. There are several possible
choices, in the following we will consider the geometric group action of diffeomorphisms
on X defined by ϕ · I = I ◦ ϕ−1 for ϕ ∈ Diff`0(Ω) and I ∈ X.

The deformations that we will consider are large deformations defined as flows of a
time-varying vector-field:

Proposition 1. [3] Let V be a fixed Hilbert space of vector fields on Ω continuously
embedded in C`0(Ω,Rn) and let v ∈ L2([0, 1], V ). Then the following ordinary differential
equation 

∂

∂t
ϕt(x) = v

(
t, ϕt(x)

)
ϕt=0 = Id

for any x ∈ Ω and t ∈ [0, 1]. (1)

has a unique absolutely continuous solution and it is a diffeomorphism at each time. It is
called the flow of v and we will denote it by ϕvt ∈ Diff`0(Ω).

In this context, the strategy of indirect registration of a template image I0 ∈ X against
some data d ∈ Y is then to minimize a functional of the form

J : v ∈ L2([0, 1], V ) 7→ C(v) +
1

λ
D
(
T (ϕvt=1 · I0), d

)
where D is a distance on Y , C : L2([0, 1], V ) 7→ R≥0 is continuous and λ > 0.

This framework leads to good result (see [14] and also [22] where the LDDMM regis-
tration was adapted to 4D reconstruction) but sometimes the obtained deformation, and
hence the reconstructed image, are not intuitively satisfying. For instance we present in
Figure 1 the result of the indirect registration of the template image presented in Fig-
ure 1a against the data d presented in Figure 1b which are the Ray transform with 100
angles uniformly distributed in [0, π] of the ground truth image Figure 1c. Even though
the reconstructed image in Figure 1h is not too far (for the L2 metric for instance) from
the ground truth image, intuitively it would have been more satisfying to obtain a defor-
mation rotating the small white structure than one distorting it like here. In particular
when keeping in mind the goal of modelling (patients) motions. It would be interesting
to force the deformation to be a local rotation, and then to optimise the parameters of
this rotation. With this non structured indirect matching, it is only possible to choose
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(a) Template. (b) Data. (c) Ground truth.

(d) t = 0. (e) t = 0.25. (f) t = 0.5. (g) t = 0.75. (h) t = 1.

Figure 1: Result of LDDMM-based indirect matching. Template I0 in Figure 1a matched
against data d in Figure 1b obtained from ground truth in Figure 1c (forward opera-
tor: Ray transform with 100 angles uniformly distributed in [0, π]). Second row: image
trajectory ϕvt · I0, the reconstructed image is in Figure 1h.

the fixed space of vector fields V but not to incorporate the additional knowledge of the
type of transformation that we would like to observe. As specified in the introduction,
several frameworks [6, 7, 16, 28, 32, 36, 37, 38, 42] allow to build particular structured
deformation models that are adapted to specific situations. However they do not provide
a generic framework for structured deformations and, to our knowledge, were not adapted
to image reconstruction.

Remark 1. This diffeomorphic approach (as well as the one that we develop in the fol-
lowing) supposes that the image I can be modelled as the deformation of the reference
image I0. The transformation of an image by a diffeomorphism can be defined, like here,
via the geometric group action (ϕ, I) 7→ I ◦ ϕ−1 so that the new transformed image has
the same level sets as the original one. It is also possible to use a mass-preserving action
(ϕ, I) 7→ |Dϕ−1|I ◦ ϕ−1 where the level sets can change but where the mass is preserved.
With the latter action, it is possible to reconstruct an image I with grey-scale values that
are different from the reference image I0 but these changes are due to a change of volume
in the deformation (via the term |Dϕ−1|). With this diffeomorphic model it is therefore
not possible to reconstruct an image I as a transformation of a reference image I0 if the
grey-scale values of I0 are not correct (for instance if the background does not have the
correct value or if there is a new structure in I). This issue has been adressed using the
metamorphosis framework [39] (allowing a change in the grey-scale value in addition to
the diffeomorphic deformation) in [19] with an ODE formulation (following the idea of
indirect registration of [14]) and in [30] with a PDE formulation that is solved using a
time discrete path method.
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3 Deformation modules

The object of this article is to show how the framework of deformation modules introduced
in [18] can be used to incorporate motion prior in image reconstruction via a constrained
indirect registration. The first step is to build constrained vector fields in Section 3.1 and
then constrained large deformations in Sections 3.4 and 3.5.

3.1 Definition

The intuition behind the deformation module framework is to constrain deformations in
order to incorporate some prior in the motion, while leaving some parameters free in order
to be able to adapt to data. For instance if the goal is to reconstruct a respiratory motion,
even though this motion is different from one patient to another, there might be some
shared “base-motions” from which any respiratory motion can be reconstructed. These
“base-motions” can be modelled by some generators that, given the current “geometrical
state” of the subject, would define a family of vector fields which can then be combined
to produce the respiratory motion. The current “geometrical state” of the subject can
be given via its image or some other geometrical variable such as landmarks, and the
coefficients of the combination of the vector fields correspond to a “control variable” in
the sense that they have to be optimized so that the global motion fits to the data. The
framework of deformation modules formalizes this intuition. The idea of “geometrical
state” is formalized by the notion of “shape” defined by S. Arguillere in [4], we give here
the simplified version of this notion that we will use:

Definition 1. Let m be an integer, O be an open subset of Rm and k > 0 a non-negative
integer. Assume that the group Diff`0(Ω) acts continuously on O, according to the action

Diff`0(Ω)×O → O
(φ, o) 7→ φ · o . (2)

We say that O is a Ck-shape space of order ` on Ω if the following conditions are
satisfied:

1. For each o ∈ O, φ ∈ Diff`0(Ω) 7→ φ ·o is Lipschitz with respect to the norm | · |` and is
differentiable at IdΩ. This differential is called the infinitesimal action of C`0(Ω)
and we will simply denote the action of a vector field v on a shape o (with a slight
abuse of notation) by v · o.

2. The mapping (o, v) ∈ O × C`0(Ω) 7→ v · o is continuous and its restriction to O ×
C`+k0 (Ω) is of class Ck.

An element o of O is called a shape, and Rn will be referred to as the ambient space.

We will use this notion of shape in order to formalize the intuition of “geometrical
state” introduced previously. The notion of deformation modules that we will present
now formalizes the intuition of “base motions” associated to a geometrical state. These
base motions form a (small) subset of the space of vector fields C`0(Ω,Rn) that can act on
the shape space.

We give a slightly simplified formal definition of a deformation module from the one
defined in [18]:

Definition 2. Let k, ` ∈ N∗. We say that M = (O, H, ζ, c) is a Ck-deformation module
of order ` with geometrical descriptors in O, controls in H, field generator ζ and
cost c, if
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• O⊂ Rm is a Ck-shape space on Ω of order ` with an infinitesimal action C`0(Ω) ×
O −→ Rm,

• H is a finite-dimensional Euclidean space,

• ζ : (o, h) ∈ O × H → ζo(h) ∈ C`0(Ω,Rn) is continuous, with h 7→ ζo(h) linear and
o 7→ ζo of class Ck,

• c : (o, h) ∈ O×H → co(h) ∈ R+ is a continuous mapping such that o 7→ co is smooth
and for all o ∈ O, h 7→ co(h) is a positive quadratic form on H, thus defining a
smooth metric on O ×H.

The field generator ζ plays the role of generator of the “base-motions”, it takes as input
couples of a geometrical descriptor and a control variable. The geometrical descriptor
is the variable giving some geometrical information and leading to the specification of
the constraints (for instance specifying the location of the generated vector field). The
control variable specifies how to combine these constraints. As the geometrical descriptor
corresponds to “geometric information”, if the geometry of the ambient space is modified
through a deformation, the geometrical descriptor should be transformed accordingly. This
is why it is necessary to specify how vector fields can act on geometrical descriptors via
the infinitesimal action of the shape space O. The importance of this parameter will be
detailed with the definition of modular large deformations in Section 3.4.

Remark 2. In [18], the deformation module was defined by a five-fold (O, H, ζ, ξ, c) where
ξ is the infinitesimal action associated to the shape space O. Here in order to simplify the
notations (and as in the examples we present there is no ambiguity about them), we will
denote all the infinitesimal actions by v · o and they will be implicitly defined via the shape
spaces of geometrical descriptors.

In the following we will restrict ourselves to deformation modules satisfying the Uni-
form Embedding Condition:

Definition 3. Let M = (O, H, ζ, c) be a Ck-deformation module of order `. We say that
M satisfies the Uniform Embedding Condition (UEC) if there exists a Hilbert space
of vector fields V continuously embedded in C`+k0 (Ω) and a constant γ > 0 such that for
all o ∈ O and for all h ∈ H, ζo(h) ∈ V and

|ζo(h)|2V ≤ γco(h) .

This condition will be required for the theoretical results presented in the following
sections. In the following we will use particular Hilbert spaces that are called Reproducing
Kernel Hilbert Space (RKHS) (see for instance [5]):

Definition 4. Let (V, 〈·, ·, 〉V ) be a Hilbert space of functions Ω 7→ Rn. We say that V is
a Reproducing Kernel Hilbert Space (RKHS) if for each x ∈ Ω, δx : f ∈ H 7→ f(x) ∈ Rn
is continuous.

If (V, 〈·, ·, 〉V ) is a RKHS, then for each (x, α) ∈ Ω × Rn, the function δαx : f ∈ V 7→
(α, f(x))Rn belongs to V ∗ (space of continuous linear forms on V ) and, from the Riesz
theorem, we can define the reproducing kernel of V :

Proposition 2. Let (V, 〈·, ·, 〉V ) be a RKHS, there exists a unique operator KV : V ∗ 7→ V
such that for all (f, h) ∈ V × V ∗, (h, f) = 〈KV h, f〉V . Besides, for each (x, y) ∈ Ω2,
there exists a unique matrix K(x, y) such that for all (α, β) ∈ Rn × Rn, αTK(x, y)β =

〈KV δ
α
x ,KV δ

β
y 〉V .

6



It can be shown (see [5]) that the RKHS V can be totally defined from the function
K : (x, y) 7→ K(x, y) and in the following we will use scalar Gaussian RKHS which are
defined from a function K : (x, y) 7→ Kσ(x, y)In where In is the identity matrix of Rn,

σ ∈ R and Kσ : (x, y) 7→ exp
(
− |x−y|

2

2σ2

)
∈ R. These RKHS are then defined by their scale

σ.

3.2 Examples

We will now present some examples that are very simple to define and that will simulta-
neously be very useful in the following. They all satisfy the uniform embedding condition.
All the images are defined on Ω =] − 16, 16[×] − 16, 16[ which is discretized in 256 × 256
pixels.

3.2.1 Local translations

Let us consider again the image in Figure 1a and imagine that there is a prior on the way
it can be transformed. Suppose that we know that there are two forces that can push or
pull in any direction, acting in areas of given sizes. A way to model these forces is by
using local translations. Then let us build a deformation module generating vector fields
that are always a sum of two local translations, localized via a scalar Gaussian kernel

Kσ : (x, y) 7→ exp− |x−y|
2

2σ2 (we fix the kernel size σ, see Section 3.1). The generated vector
fields will then be parametrized by:

• 2 points, centres of the local translations: they define the locations of the translations
given the current geometrical state and then are geometrical descriptors

• 2 vectors, vectors of the local translations: they define how the two local translations
can be used to generate an adapted vector field and then they are control variables.

The space of geometrical descriptors is therefore O = Ω × Ω (space of two points),
the space of controls is H = R2 × R2 (space of two vectors) and the field generator is
ζ : (o, h) ∈ O × H 7→

∑2
i=1Kσ(oi, ·)hi with o = (o1, o2) and h = (h1, h2). A natural

choice for the infinitesimal action of O is the application of vector fields to the two points:
(o, v) ∈ O×C`0(Ω,R2) 7→ v ·o = (v(o1), v(o2)) with o = (o1, o2). The cost can be chosen as
c : (o, h) 7→ |ζo(h)|2Vσ with Vσ the RKHS associated with Kσ so that the defined deformation
module M = (O, H, ζ, c) straightforwardly satisfies the UEC. The set of vector fields that
can be generated by this deformation module is rich, as illustrated in Figure 2, but these
vector fields follow the strong prior of being sums of two local translations.

3.2.2 Contracting-dilating field

Suppose now that one has an additional prior on the directions of the vectors of the two
translations: that they should both be parallel to the line between the two centres and in
opposite direction. In this case it is not adapted to let the vectors of the translation being
controls variables as they cannot be chosen freely. On the contrary the directions are now
a function of the geometrical descriptor, and the variable that can now be freely chosen
is a scalar to which will be multiplied the vectors of the translations. More precisely we
can set, for this new deformation module, Õ = Ω × Ω, H̃ = R and ζ̃ : (o, h) ∈ Õ × H̃ 7→
h
(
K(o1, ·)−K(o2, ·)

)
(o1−o2) with o = (o1, o2). We define as previously, the infinitesimal

action of Õ by (o, v) ∈ Õ×C`0(Ω,R2) 7→ v ·o = (v(o1), v(o2)) and c̃ : (o, h) 7→ |ζo(h)|2Vσ . We
present in Figure 3 several examples of vector fields generated by this deformation module
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Figure 2: Three examples of vector field generated by a deformation module generating
sums of two local translations (see Section 3.2.1, σ = 6) for three different values of
geometrical descriptors and controls. The blue crosses are the geometrical descriptors, the
red arrows are the controls and the vector fields are plotted in green.

Figure 3: Three examples of vector field generated by a deformation module generating
contracting or dilating field (see Section 3.2.2, σ = 8) for three different values of geomet-
rical descriptors and controls. The blue crosses are the geometrical descriptors, the vector
fields are plotted in green. The scalar control is positive for the left and middle figure,
and negative for the figure on the right.

M̃ = (Õ, H̃, ζ̃, c̃). Note that the vector fields generated by M̃ can also be generated by M
but that they are not parametrized in the same manner: an additional prior comes with
M̃ .

3.2.3 Constrained translations generator (CTG) deformation modules

In the following we will use a certain category of deformation modules that generate vector
fields which are a constrained sum of local translations, generalizing the ones previously
presented in Section 3.2.2. More precisely we set a scale σ ∈ R>0, N ∈ N and two
functions f : (Rn)N 7→ (Rn)p (a point-generator function) and g : (Rn)N 7→ (Rn)p (a vector-
generator function) with p ∈ N. Then we define O = ΩN (space of N points), H = R and
ζ : (o, h) ∈ O ×H 7→ h

∑p
i=1Kσ(fi(o), ·)gi(o) with f = (fi) and g = (gi), where Kσ is the

scalar Gaussian kernel of size σ (see Section 3.2.1).
The idea here is to associate, to each geometrical descriptor o, a set of points -

(f1(o), . . . , fp(o)) and a set of vectors (g1(o), . . . , gp(o)) so that the vector fields that can
be generated with o are colinear to the sum of the local translations centred at points
fi(o) with vectors gi(o). The infinitesimal action can be simply defined by the application
of the vector field to the points composing the geometrical descriptor and the cost by
c : (o, h) ∈ O×H 7→ ε|ζo(h)|2Vσ + h2 for some C > 0. This definition as a sum of these two
terms is due to regularity reasons, ensuring that co is a quadratic form on H for all o in O

8



and that the deformation module satisfies the uniform embedding condition. Deformation
modules that can be defined this way will be called constrained translations generator
deformation modules and refered to as CTG modules.

Remark 3. In the following we will only use scalar Gaussian kernels, so we will only
specify the scale σ in order to define the used kernel. This kernel is smooth and then
the generated vector fields are also smooth. As a consequence, constrained translations
generator deformation modules are Ck-deformation modules of order ` for any k, ` ≥ 1
such that f and g are Ck.

These deformation modules are defined by three parameters: the kernel-size σ, the
point-generator function f and the vector-generator function g. We present in Figure 4
various vector fields generated by various deformation modules, i.e. for various choices of
σ, f and g.

3.3 Combining deformation modules

An interesting feature of this framework is that deformation modules can be combined to
form a compound deformation module that will generate vector fields that are a sum of
the vector fields generated by the combined deformation modules. More precisely:

Definition 5. Let M l = (Ol, H l, ζ l, cl), l = 1 . . . L, be L Ck-deformation modules of order
`. We define the compound module of modules M l by C(M l, l = 1 . . . L) = (O, H, ζ, ξ, c)
where O =

∏
lOl, H =

∏
lH

l and for o = (ol)l ∈ O, ζo : h = (hl) ∈ H 7→
∑

l ζ
l
ol

(hl),

v · o = (v · ol)l ∈ ToO (for v ∈ C`0(Rn)) and co : h = (hl) ∈ H 7→
∑

l c
l
ol

(hl).

As shown in [18], the uniform embedding condition is stable under combination and
then an easy way to build complex deformation modules satisfying the uniform embedding
condition is to combine several simple deformation modules satisfying this condition.

In Figure 5 we present three examples of vector fields generated by two different com-
pound deformation modules.

In the following we will consider deformation modules M = (O, H, ζ, c) that are ob-
tained through combination of CTG modules. The space of geometrical descriptors O is
then made of points of the ambient space Rn so there exists m ∈ N such that O ⊂ (Rn)m.
As a consequence, when necessary, we will specify this number of points m.

Remark 4. If M = (O, H, ζ, c) is obtained through combination of CTG modules such
that ζ is Ck, then M is a Ck-deformation module of order ` for any ` > 0.

3.4 Modular large deformations

The notion of deformation module allows to constrain vector fields via the field generator
ζ. The next step in order to define a constrained indirect registration consists in specifying
how deformation modules can be used to build large deformations so that the constraints
on vector fields are transformed into constraints on diffeomorphisms. Large deformations
are obtained as flows of time-varying vector fields and the idea is then to consider only
vector fields that can be generated by the field generator of a given deformation module.
These trajectories of vector fields are then parametrized by trajectories of geometrical
descriptors and controls and then in order to defined modular large deformations, one needs
to specify the trajectories of geometrical descriptors and controls that will be considered.
We will consider what we call controlled path of finite energy :
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(a) Local scaling, σ = 5

(b) Local rotation, σ = 5

(c) Local shearing, σ = 1.5

Figure 4: Examples of vector fields generated by three constrained translations gen-
erator deformation modules (see Section 3.2.3) for three different choices of kernel-size
σ, point-generator function f and vector-generator function g, leading to three types of
vector fields: local scaling (Figure 4a), local rotation (Figure 4b) and local shearing (Fig-
ure 4c). For each deformation module, we present 3 examples of generated vector field
for three different values of geometrical descriptors and controls. The blue crosses are the
geometrical descriptors, vectors generated by the vector-generator functions g are in black
(their base-points are points defined by f(o)) and the vector fields are plotted in green
(the scalar controls are not represented, they are positive for left and middle figures, and
negative for the right one).
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(a) Vector fields generated by combining a local rotation (σ = 5, geometrical descriptors are blue
crosses) and a local scaling (σ = 5, geometrical descriptors are blue dots)

(b) Vector fields generated by combining a local rotation (σ = 5, geometrical descriptors are blue
crosses) and a local shearing (σ = 8, geometrical descriptors are blue squares)

Figure 5: Examples of vector fields generated by two compound deformation modules.
In Figure 5a are represented vector fields generated by combining deformation modules
generating local scaling and local rotations. In Figure 5b are represented vector fields gen-
erated by combining deformation modules generating local shearing and local rotations.
For each of the two compound deformation modules, we present 3 examples of generated
vector field for three different values of geometrical descriptors and controls. The geomet-
rical descriptors are plotted in blue, vectors generated by the vector-generator functions
g are in black (their base-points are points defined by f(o)) and the vector fields in green
(the scalar controls are not represented).
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Definition 6. Let M = (O, H, ζ, c) be a deformation module and let a, b be in O. We
denote Θa,b the set of measurable curves t 7→ (ot, ht) ∈ O × H where ot is absolutely
continuous (a.c.), starting from a and ending at b, such that for almost every t ∈ [0, 1],
d
dtot = vt · ot, where vt = ζot(ht), and

E(o, h) =

∫ 1

0
cot(ht)dt <∞ . (3)

The quantity E(o, h) is called the energy of (o, h) and Θa,b is the set of controlled
paths of finite energy starting at a and ending at b.

In order to build constrained large deformations, it is necessary to show that the
trajectory of vector fields t 7→ ζot(ht) defined from a controlled path of finite energy
t 7→ (ot, ht) can be integrated in a trajectory of diffeomorphisms via the flow Equation (1).
This is ensured by the following proposition, proved in [18].

Proposition 3. Let us suppose that M satisfies UEC (with V the corresponding Hilbert
space of vector fields). Let (o, h) ∈ Θa,b and for each t, vt = ζot(ht). Then v ∈
L2([0, 1], V ) ⊂ L1, the flow ϕv exists, h ∈ L2([0, 1], H) and for each t ∈ [0, 1], ot = ϕvt .o0.
We call the final diffeomorphism ϕvt=1 (resp. the trajectory t 7→ ϕvt ) a modular large
deformation generated by a (resp. the trajectory of modular large deformations
generated by (o, h)).

Remark 5. Such (constrained) modular large deformations will be used in Section 4 to
transform a template image and perform constrained indirect registration.

In Figure 6 we present an example of modular large deformation generated by the
combination of two deformation modules. The first one generates “shearing” field at the
scale σ = 8 its geometrical descriptors are formed of two points (O = Ω × Ω), the point-
generator function is f : o 7→ o (identical function) and the vector-generator function is
g : o = (o1, o2)∈ Ω× Ω 7→ (u⊥,−u⊥) where u = o1 − o2 ∈ R2 and, with u = (ux, uy),
u⊥ = (uy,−ux) (vectors of g(o) are orthogonal to the line between the two points of o).
The second deformation module generates local rotations (at the scale σ = 3). We denote
the compound deformation by Mcp = (Ocp, Hcp, ζcp, ccp) and the trajectory shown in
Figure 6 is ϕζ

cp
ot

(ht) · I0 where t 7→ (ot, ht) ∈ Ocp×Hcp is a controlled path of finite energy
(with ht constant and positive), t 7→ ϕζ

cp
ot

(ht) the corresponding flow trajectory and I0 an
initial image.

This example illustrates that geometrical descriptors naturally follow the deformation
of the ambient space during modular large trajectories due to the equation d

dtot = ζot(ht) ·
ot. We emphasize here that the geometrical descriptors of the two combined deformation
modules are transported by the total vector field generated by the compound deformation
module: in particular the centre of the rotation is displaced by the shearing field. Then,
the area which is both rotated and translated by the shearing motion remains the same
during the whole trajectory. Note that this is a direct consequence of the definition of the
combination of deformation modules and that in order to build such deformations, one
only needs to define two deformation modules and then apply the simple combination rule
defined in Section 3.3.

3.5 Shooting equations

The goal of this article is to use the modular large deformations defined above in order
to perform indirect registration. Let M = (O, H, ζ, c) be a combination of CTG modules,
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(a) t = 0 (b) t = 0.25 (c) t = 0.5 (d) t = 0.75 (e) t = 1

Figure 6: Deformation of the first image I0 (at t = 0) by a trajectory of modular large de-
formation generated by the combination of two deformation modules. The corresponding
geometrical descriptors are in blue (squares for shearing deformation module and cross for
the rotation one) and vectors generated by the vector-generator functions g are in black.

with n the dimension of the ambient space and O ⊂ (Rn)m (see Section 3.3). We will not
consider any modular large deformations that can be built from the deformation module
M , but only these that minimize the energy (3) between starting and ending points.
The corresponding trajectories (o, h) of geometrical descriptors and controls are called
geodesics. In order to characterize such geodesics, we need to introduce the Hamiltonian
H : (o, η, h) ∈ O × (Rn)m × H 7→

∑m
i=1 η

T
i (ζo(h)(oi)) − 1

2co(h) with o = (o1, . . . , om),
η = (η1, . . . , ηm) and ζo(h)(oi) ∈ Rn the application of the vector field ζo(h) generated by
(o, h) to the i−th point of o. As shown in [18], if (o, h) is a normal geodesics there exists
η : [0, 1] 7→ (Rn)m, called the momentum such that

dot
dt = ζot(h

∗
t ) · ot

dηt
dt = −∂oH(ot, ηt, h

∗
t )

h∗ = C−1
o

∑nH
k=1

(∑m
i=1 η

T
i (ζo(ek)(oi))

)
ek .

(4)

where (e1, . . . , enH ) is a orthonormal basis of H and for each o in O, the operator Co : H 7→
H is defined by (Coh, h)H = co(h) (with (·, ·)H the inner product of H).

Proposition 4. If the field generator ζ is at least C2, the solution of this equation is totally
defined by the initial conditions. Besides the solution t ∈ [0, 1] 7→ (ot, ηt, h

∗
t ) ∈ O×(Rn)m×

H depends continuously on the initial conditions (ot=0, ηt=0) when C([0, 1],O×(Rn)m×H)
is equipped with the supremum norm.

Proof. Indeed from Lemma 1(see below), the function (o, η) ∈ O × (Rn)m 7→
(
ζot(h

∗
t ) ·

ot,−∂oH(ot, ηt, h
∗
t )
)

with h∗ = C−1
o (ξo ◦ ζo)∗(η) is at least C1 and then Equation (4)

as a unique maximal solution for each initial condition in O × (Rn)m. The continuity
of the solution with respect to the initial conditions can then be deduced from general
theorems.

Lemma 1. If M = (O, H, ζ, c) is a combination of L CTG modules (see Section 3.2.3),
then for each o in O, the operator Co is invertible and C−1 : o ∈ O 7→ C−1

o is smooth.

Proof. Let us denote Mk = (Ok, Hk, ζk, ck), k = 1, . . . , L the CTG modules of which
M is the combination. For each k, there exist functions fki and gki , i = 1, . . . , pk such
that ζk is given by ζk : (o, h) ∈ O × H 7→ h

∑pk
i=1Kσ(fki (o), ·)gki (o). From the def-

inition of the cost one gets that for each k and for all (o, h) in Ok × Hk, Cko (h) =
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h(1 +
∑

i,jKσ(fki (o), fkj (o))gki (o)
T
gkj (o)) (let us recall that the control h ∈ Hk is scalar).

Since Kσ is a reproducing kernel, the quantity
∑

i,jKσ(fki (o), fkj (o))gki (o)
T
gkj (o) is al-

ways non-negative. As a consequence, the operator Cko
−1

is well defined for all o in

Ok and from the smoothness of functions fki and gki on gets that o ∈ Ok 7→ Cko
−1

=
1

1+
∑
i,j Kσ(fki (o),fkj (o))gki (o)

T
gkj (o)

is smooth.

This is true for all k and as Co is defined by Co : h = (h1, . . . , hL) ∈ H 7→(
C1
o1(h1), . . . , CLoL(hL)

)
for all o = (o1, . . . , oL) in O (this is a direct consequence of the

definition of the cost of a compound deformation module, see Section 3.3), it is clearly
invertible and o 7→ C−1

o is smooth.

Remark 6. Using Proposition 4, in the following we will parametrize the modular defor-
mations minimizing the energy by initial conditions in O × (Rn)m (an initial geometrical
descriptor and an initial momentum). The corresponding trajectory t 7→ (ot, ht) of ge-
ometrical descriptors and controls can be recovered by integrating Eq. (4) and then the
modular large deformation is the flow (see Proposition 1) of the time-varying vector field
t 7→ ζot(ht).

4 Image reconstruction with a deformation prior

4.1 Constrained indirect registration

Let us consider M = (O, H, ζ, c) a Ck-deformation module with k ≥ 2, obtained by
combining CTG modules, with Rn the ambient space and O = ΩM with Ω =]−ω, ω[n for
some ω in R (it is an open set of Rn). The set Ω will be the set of Rn on which images
are defined, and geometrical descriptors of O are formed of M points in Ω.

Let Y be a Banach space and D its distance. The idea here is to search, amongst all
the modular large deformations parametrized by an initial variable in O× (Rn)m, the one
allowing to perform the indirect registration between a given template in L2(Ω,R) and
some observed data in Y .

In all this section we set T : L2(Ω,R) 7→ Y a continuous operator and I0∈ L2(Ω,R)
a template image. Let d∈ Y be some data, the modular indirect registration between I0

and d corresponds to minimizing:

Jd : (a, η0) ∈ O × (Rn)m 7→ γR1(a) + τR2(η) +D
(
T (ϕ

ζo(h)
t=1 · I0), d

)
2 (5)

where (o, η) starts at (ot=0, ηt=0) = (a, η0) and satisfies Equation (4), γ, τ ∈ R>0,
R1 : a ∈ O 7→

∑
x∈a

1
||x|2−ω2|2 ∈ R>0 ∪ {∞} where the notation

∑
x∈a means summation

over all points which form the geometrical descriptor a, R2 : η ∈ (Rn)m 7→ |η|2 ∈ R≥0.

Remark 7. The regularization function R1 takes finite values for geometrical descriptors
a ∈ ΩM such that the M points are in the open disc centred at zero with radius ω. Then
it is assumed here that the initial geometrical descriptors should stay in this disc for the
optimal solution. If this is too restrictive given the images (in particular if there should be
some deformation occurring in the corners of the image), a simple solution is to extend

the image (with value zero) on an extended domain Ω̃ =]− 2ω, 2ω[n and to re-define O by
Ω̃M and R1 by a ∈ O 7→

∑
x∈a

1
||x|2−(2ω)2|2 .
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Remark 8. This reconstruction method consists in the minimization of Equation (5): it
is an optimization problem on the space O × (Rn)m which is of dimension 2nm.

4.2 Regularising properties

Proposition 5 (Existence). If the field generator ζ is at least C2, for all d in Y , Jd has
a minimizer in O × (Rn)m.

Proof. Let d ∈ Y and let us show that Jd has a minimizer in O× (Rn)m. Let a0 ∈ O, from
the conditions on the regularization functions R1 and R2 and the fact that O × (Rn)m

is of finite dimension, there exists a compact set F of O × (Rn)m such that for (a, η) ∈
O × (Rn)m − F , Jd(a, η) > Jd(a0, 0). We can assume that F contains (a0, 0). Then
showing that Jd has a minimizer in O×(Rn)m amounts to showing that it has a minimizer
in F and, as F is compact, it is sufficient to check that Jd is continuous. First, from
Proposition 4 and the continuity of ζ, we deduce that the trajectory of vector fields
t ∈ [0, 1] 7→ ζoa,η0t

(ha,η0t ), where (oa,η0 , ha,η0) is given by integrating Equation (4) with

the initial condition (a, η0), depends continuously on the initial conditions (a, η0). As

a consequence (see [12]), (a, η0) 7→ ϕ
ζoa,η0 (ha,η0 )
t=1 · I0 ∈ L2(Ω,R) is a continuous function

which concludes the proof.

Proposition 6 (Stability). Assume that the field generator ζ is at least C2 and let dk be
a sequence of Y that converges to d in Y . For each k, let (ak, ηk0 ) be a minimizer of Jdk .
Then there exists a sub-sequence of (ak, ηk0 ) that converges to a minimizer of Jd.

Proof. Let a ∈ O, for each k, Jdk(ak, η0
k) ≤ Jdk(a, 0) = R1(a)+R2(0)+ 1

λD(T (I0), dk)
2 −→

R1(a)+R2(0)+ 1
λD(T (I0), d)2. Then the sequences R1(ak) and R2(ηk0 ) are bounded and as

a consequence (ak, ηk0 ) is in a compact set of O× (Rn)m (because it is of finite dimension).
Then up to an extraction, we can suppose that (ak, ηk0 ) converges to (a∞, η∞0 ) which leads
to Jdk(ak, ηk0 ) −→ Jd(a

∞, η∞0 ) (because dk −→ d in Y ). Then let (a, η0) be in O× (Rn)m,
for each k, Jdk(ak, ηk0 ) ≤ Jdk(a, η0) so when taking the limit of both terms one gets
Jd(a

∞, η∞0 ) ≤ Jd(a, η0). This is true for any (a, η0) so (a∞, η∞0 ) is a minimizer of Jd.

Proposition 7 (Convergence). Assume that the field generator ζ is at least C2 and let

d ∈ Y . Assume that there exists (â, η̂0) ∈ O × (Rn)m such that T (ϕζ
â,η̂0

t=1 · I0) = d and
R1(â) < ∞. Furthermore, assume that there exists a parameter selection rule γ : R>0 7→
R>0, τ : R>0 7→ R>0 such that δ 7→ γ(δ)/τ(δ) and δ 7→ τ(δ)/γ(δ) are bounded and γ(δ)→
0, τ(δ)→ 0, δ2/γ(δ)→ 0, δ2/τ(δ)→ 0 as δ → 0.

Let (δk) be a sequence in R>0 converging to 0 and let (dk) be a sequence in Y such that
D(dk, d) ≤ δk for each k. Finally let, for each k, (ak, ηk0 ) be a minimizer of JI0,dk,T . Then

there exists a sub-sequence of (ak, ηk0 ) that converges to a minimizer of Jd in O × (Rn)m.

Proof. We set for each k, γk = γ(δk) and τk = τ(δk). Then, for each k we have:

R1(ak) ≤ 1
γk
Jdk(ak, ηk0 ) ≤ 1

γk
Jdk(â, η̂0)

= 1
γk

(
γkR1(â) + τkR2(η̂0) +D(T (ϕâ,η̂0t=1 · I0), dk)

2
)

≤ R1(â) + τk
γk
R2(η̂0) +

δ2k
γk

From the hypothesis, we deduce that R1(ak) is bounded and then that ak is in a compact
set. In a similar way we can show that ηk0 is in a compact set so up to an extraction we
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can suppose that (ak, ηk0 ) converges to (a∞, η∞0 ) in O × (Rn)m. As shown previously, this
leads to

D(T (ϕζ
ak,ηk0

t=1 · I0), d) −→ D(T (ϕζ
a∞,η∞0
t=1 · I0), d) .

Besides,

D(T (ϕζ
ak,ηk0

t=1 · I0), d) ≤ D(T (ϕζ
ak,ηk0

t=1 · I0), dk) +D(d, dk)

≤
√
Jdk(ak, η

k
0 ) +D(d, dk)

≤
√
γkR1(â) + τkR2(η̂0) +D(d, dk)2 +D(d, dk)

which tends to 0 for k −→∞. As a consequence:

D(T (ϕζ
a∞,η∞0
t=1 · I0), d) = 0

which concludes the proof.

Remark 9. We assume that R1(â) <∞, if it is not the case it means that the boundary
ω is not appropriate, in this case as explained previously, one only needs to increase it and
extend the image.

5 Application to image reconstruction

5.1 Overview

We present here examples of image reconstruction via modular indirect matching. In order
to do so we minimize functional (5) with respect to the initial geometrical descriptor and
momentum. Except in Section 5.3.2 the regularization parameters are τ = 10−5 and γ =
10−5. The deformation modules that we use here are combinations of CTG modules (see
Section 3.2.3). In all the experiments, the domain of the images is Ω = [−16, 16]×[−16, 16]
and is discretized using 256 × 256 pixels. We use the Operator Discretization Library
(ODL) 1 in order to define discretized images (in particular for their interpolations) and
operators. The optimisation is performed via a gradient descent, and the gradient is
computed with a forward and backward integration scheme as described in [17] (Section
6), the algorithm is presented in Annexe A.

We present results of image reconstruction for two different types of operator T : a 2-D
tomography operator and a restricting operator (they are defined in the corresponding
sections). The data are in most cases noisy data, and we will specify the noise level by
the signal-to-noise ratio (SNR), which is defined as

SNR(d) = 10 log10

(
‖d0 − d0‖2

‖ε− ε‖2

)
,

where d0 is the noise-free part of the data and ε = d− d0 the noise-part and x denotes the
mean of x. The SNR is expressed in terms of decibel.

1https://github.com/odlgroup/odl
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Remark 10. In all the experiments, the initial geometrical descriptors are optimized.
However, as we suppose that we know perfectly the deformation module to use, it is rea-
sonable to assume also that we know approximately the location of the deformation. As a
consequence we initialize the geometrical descriptors so that the location of the generated
deformations are appropriate.

5.2 2-D tomography operator

5.2.1 2-D tomography operator

In this example the forward operator T is the 2-D Ray transform defined by, for I ∈
L2(Ω,R),

T (I) : (w, x) ∈ S1 × R2 7→
∫
s∈R,x+sw∈Ω

I(x+ sw)ds ,

where S1 is the unit circle. In the discretized setting, we specify the angles (discretization
of S1) and the number of lines per angle (discretization of a bounded interval of R). I
used the implementation of the Ray transform of the Operator Discretization Library
(ODL) 1. In the first two examples (Sections 5.2.2 and 5.2.3), we use 100 angles uniformly
distributed in [0, π] and 724 lines per angle. In the last example we study the case of
sparse and limited data.

5.2.2 Local rotation

We will first consider the same noise-free data as in Figure 1 for which unconstrained
deformation frameworks do not give satisfying results. In order to obtain a better recon-
structed image via constrained deformations, the prior to incorporate in the deformation
model is that there should be an anisotropic rotation acting in the area of the small white
structure. We present here an easy way to build a CTG module corresponding to this
prior. We set the kernel size σ = 0.5, O = Ω × Ω (geometrical descriptors are formed of
two points) and we define f by associating, to each geometrical descriptor o = (o1, o2),
points regularly spaced by a distance σ in a rectangle grid of axis o1− o2 (8 points in this
direction) and its orthogonal (5 points in this direction, so that in total there are 8×5 = 40
points), see Figure 7. Then we define the function g so that the vector associated to fi(o)
is gi(o) = R o1+o2

2
,π
2

(fi(o)) where R o1+o2
2

,π
2

is the infinitesimal rotation (angle π
2 ) centred

at o1+o2
2 (see Figure 7). In this example, the geometrical descriptors are made of m = 2

points so (see Remark 8 the dimension of the parameter to estimate is 8.
In Figure 8 we show the result of the indirect registration using this deformation

module. We can see here that as we only allow the vector field at each time to be a local
rotation, the desired deformations occurs. Then, if necessary, one could for instance study
the estimated parameters of this deformation (given by the initial momentum).

5.2.3 Local rotation and additional deformation

Let us now consider the case where the ground truth is the image in Figure 9c and data
are noisy (see Figure 9b, SNR = 9.8). In this case there are additional differences be-
tween the template and the ground truth. Let us suppose that the only prior that we
have about the form of the deformation is that there are a “pushing-forces” acting (this
can for instance model a growth) and that the area on which they act can be modelled
via a Gaussian kernel. The easiest way to model this is via translations. We then build
two deformation modules, each one generating one local translation. For each one the
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Figure 7: Examples of points f(o) (first row, black points) and vectors g(o) (second
row, black vectors) generated by the deformation module presented in Section 5.2.2. Each
column corresponds to an example of geometrical descriptor (in blue).

(a) Template. (b) Data. (c) Ground truth.

(d) t = 0. (e) t = 0.25. (f) t = 0.5. (g) t = 0.75. (h) t = 1.

Figure 8: Result of constrained indirect matching. Template I0 in Figure 8a matched
against data d in Figure 8b obtained from ground truth in Figure 8c (forward operator:
Ray transform with 100 angles uniformly distributed in [0, π]) with the deformation module

presented in Section 5.2.2. Second row: image trajectory ϕ
ζo(h)
t ·I0, the reconstructed image

is then in Figure 8h. The blue crosses are the geometrical descriptors (their initialisation
are in Figure 8a).
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(a) Template. (b) Noisy data. (c) Ground truth.

(d) t = 0. (e) t = 0.25. (f) t = 0.5. (g) t = 0.75. (h) t = 1.

Figure 9: Result of constrained indirect matching. Template I0 in Figure 9a matched
against noisy data d in Figure 9b obtained from ground truth in Figure 9c (forward oper-
ator: Ray transform with 100 angles uniformly distributed in [0, π]) with the deformation

module presented in Section 5.2.3. Second row: image trajectory ϕ
ζo(h)
t · I0, the recon-

structed image is then in Figure 9h. The geometrical descriptors are in blue (crosses for
the anisotropic rotation, plus for the translation with σ = 2 and dot for the translation
with σ = 1).

space of geometrical descriptors is then R2 (one point) and the space of controls is R2

(one vector). As previously (see Section 3.2.1) we use a Gaussian kernel, the kernel sizes
are respectively 2 and 4 and are supposed to be known. We also use the previous defor-
mation module generating a local and anisotropic rotation. Then we combine these three
deformation modules (see Section 3.3). The result of the indirect registration using this
compound deformation module is presented in Figure 9. In this example, the geometrical
descriptors are made of m = 4 points so (see Remark 8 the dimension of the parameter
to estimate is 16. As previously, the adapted rotation deformation is estimated by the
gradient descent, and simultaneously the two translations “push” in the good direction to
lead to a satisfying image reconstruction (Figure 9h).
This examples illustrates how one can easily complicate pre-existing deformation con-
straints (modelled by a given deformation module) by building new deformation modules
and combining them with the pre-existing deformation module.

5.2.4 Limited and sparse data

One interest of our framework is that, by incorporating a deformation prior in the recon-
struction method, we reduce the space of solutions and then good results can be obtained
with limited data. We present here an example of this feature. We use the same tem-
plate and ground truth image as in the previous Section 5.2.3 but data correspond to a
discretized ray transform with 10 angles uniformly distributed in [0.3π, 0.7π]. This setting
is more challenging than the previous one with full data and it is necessary to incorporate
prior information in the reconstruction method in order to obtain satisfying results.
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(a) α = 0.01, β = 0.01. (b) α = 0.01, β = 0.1. (c) α = 0.01, β = 1.

(d) α = 0.1, β = 0.01. (e) α = 0.1, β = 0.1. (f) α = 0.1, β = 1.

(g) α = 1, β = 0.01. (h) α = 1, β = 0.1. (i) α = 1, β = 1.

Figure 10: Reconstruction with L2-TV regularization in a sparse and limited angles
setting (10 angles uniformly distributed in [0.3π, 0.7π]).

A classical way to use the template I0 as a prior is to add a penalization of the L2

distance to this template in the Total Variation (TV) algorithm. In this framework,
the regularity of the solution I is controlled by α|∇I| + β|I − I0|2 which depends on
two regularization parameters α and β. We present on Figure 10 the results of this
reconstruction method for different values of α and β. This shows that this method is not
satisfying for this setting of limited and sparse angles.

On the contrary, as shown on Figure 11 our method gives good results for this setting.

5.3 Reconstruction from a partial observation

5.3.1 Framework and first example

We present now an example where the operator is a restriction operator which means that
we only observe a small area of the whole image. This area will be a rectangle and then
defined by its extremal points. This example illustrates how a prior knowledge about a
’large-scale motion’ can allow to reconstruct an image from a ’small-scale observation’. The
template, ground truth image and data are presented in Figure 14 (the observation window
for the data is [−5, 5] × [−5, 5] and the SNR is 3). We suppose that we know that only
two types of motions can happen here: an horizontal compressing motion (see Figure 12a)
and a shearing motion (moving horizontally, see Figure 12b). A simple way to build a
CTG module generating compressing (resp. shearing) vector field is to set O = Ω × Ω
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(a) t = 0. (b) t = 0.25. (c) t = 0.5. (d) t = 0.75. (e) t = 1.

Figure 11: Result of constrained indirect matching in a sparse and limited angles setting

(10 angles uniformly distributed in [0.3π, 0.7π]). This is the image trajectory ϕ
ζo(h)
t · I0,

the reconstructed image is then in Figure 11e.

(a) Compressing motion. (b) Shearing motion.

Figure 12: Motions modelled in Section 5.3

(geometrical descriptors are made of two points), f = IdO and g : o = (o1, o2) 7→ (u,−u)
with u = o1 − o2 (resp. g : o = (o1, o2) 7→ (u⊥,−u⊥) with u = o1 − o2 ∈ R2 and, with
u = (ux, uy), u

⊥ = (uy,−ux)). For these two deformation modules the kernel size is 8.
See Figure 13 for illustrations of this construction.

The result of the indirect registration with the combination of these two deformation
modules is presented in Figure 14. In this example, the geometrical descriptors are made
of m = 4 points so (see Remark 8) the dimension of the parameter to estimate is 16. The
image is well reconstructed: our method allows to understand how the whole image differs
from the template one, even if only a small part is observed.

5.3.2 Robustness

We study here the robustness of our reconstruction method with respect to the reg-
ularization parameters, as well as the influence of the noise level on the reconstruction
result.

Regularization parameters Our reconstruction methods relies on the minimization
of the function (5) where two regularization parameters needs to be chosen: γ and τ . We
launched the same experiment as in the previous Section 5.3.1 with different values for
these parameters: (1., 10−3, 10−5, 10−7) but fixed level of noise (SNR = 3). We show in
Figure 15 the difference between the ground truth and our reconstructed image for each
couple (γ, τ). We also give the value of the SSIM and the L2 norm of this difference in
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(a) Vector fields generated by deformation module generating compressing-dilating field. Geomet-
rical descriptors are crosses.

(b) Vector fields generated by deformation module generating shearing fields. Geometrical descrip-
tors are pluses.

Figure 13: Examples of vector fields generated by the two deformation modules defined
in Section 5.3 (σ = 8 for both). The geometrical descriptors o are plotted in blue, vectors
g(o) are in black and the vector fields in green (the scalar controls are not represented).

(a) Template. (b) Noisy data. (c) Ground truth.

(d) t = 0. (e) t = 0.25. (f) t = 0.5. (g) t = 0.75. (h) t = 1.

Figure 14: Result of constrained indirect matching. Template I0 in Figure 14a matched
against noisy data d in Figure 14b obtained from ground truth in Figure 14c (forward
operator: restricting operator) with the deformation module presented in Section 5.3.

Second row: image trajectory ϕ
ζo(h)
t · I0, the reconstructed image is then in Figure 14h.

The geometrical descriptors are in blue (crosses for the compressing-field module and
pluses for the shearing-field module.)
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τ
γ

1 10−3 10−5 10−7

1
0.95 0.96 0.95 0.94
1.98 1.58 2.05 2.17

10−3 0.95 0.94 0.96 0.93
1.97 2.24 1.72 2.62

10−5 0.95 0.95 0.94 0.96
2.05 1.90 2.15 1.78

10−7 0.83 0.99 0.95 0.95
5.28 0.65 1.93 2.12

Table 1: SSIM (top) and L2 difference with the ground truth (bottom) values for
various regularisation parameters.

SNR 10 3 0.04 −3

SSIM 0.99 0.98 0.92 0.91
L2 difference 0.43 0.77 2.78 2.98

Table 2: SSIM and L2 difference with the ground truth values for various noise level.

Table 1. Except for the extremal value (γ, τ) = (1, 10−7), all reconstructions are close to
each other and satisfying.

Noise influence We present here the results for the same reconstruction problem as in
Section 5.3.1 but for varying noise levels. In Figure 16 we show the difference between the
reconstructed image and the ground truth, and in Table 2 we give the values of the SSIM
and the L2 norm of this difference.

5.3.3 Conclusion

The results of our regularization method on this example does not show a great sensitivity
to the regularization parameter or the noise level. This is probably due to the fact that,
by incorporating the deformation prior in the reconstruction method, we reduce the space
of possible solutions.

6 Conclusion

We have presented a framework to reconstruct images as transformations of a known tem-
plate image via constrained deformations. The deformations are constrained via CTG
modules which are a particular category of deformation modules that is easy to use and
can produce a wide variety of deformations. We showed that this is a well-defined regu-
larization method, and illustrated that it allows to perform good reconstruction on 2-D
simulated examples with noisy data. We showed in particular that incorporating defor-
mation constraints enabled to recover a good reconstructed image from incomplete data:
the prior compensates for the lack of data. In future works we intend to pursue in this
direction: the idea is to use some motion prior, via the appropriate deformation modules,
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(a) γ = 1, τ = 1. (b) γ = 1, τ = 10−3. (c) γ = 1, τ = 10−5. (d) γ = 1, τ = 10−7.

(e) γ = 10−3, τ = 1. (f) γ = 10−3, τ = 10−3. (g) γ = 10−3, τ = 10−5. (h) γ = 10−3, τ = 10−7.

(i) γ = 10−5, τ = 1. (j) γ = 10−5, τ = 10−3. (k) γ = 10−5, τ = 10−5. (l) γ = 1−5, τ = 10−7.

(m) γ = 10−7, τ = 1. (n) γ = 10−7, τ = 10−3. (o) γ = 10−7, τ = 10−5. (p) γ = 10−7, τ = 10−7.

Figure 15: Difference between reconstructed image and ground truth for several values
of (γ, τ).

(a) SNR = 10. (b) SNR = 3. (c) SNR = 0.04. (d) SNR = −3.

Figure 16: Difference between reconstructed image and ground truth for several noise
levels.

24



in order to efficiently reconstruct an image from temporal data when only few data are
acquired at each time.

In all the numerical examples, we supposed that the appropriate deformation modules
are perfectly known. In particular we suppose that the Gaussian kernel is an appropriate
localizing function and that its kernel-size is known. This will in general not be the
case with real data and we are currently working on methods to define the appropriate
deformation modules, so that our reconstruction framework can be used easily with real
data.

The final goal will be to estimate also the template image from temporal data so that
we can perform full spatio-temporal reconstruction. In order to do so we will develop an
iterative scheme where this image and the deformation are alternatively optimized.

As explained in Remark 1, the indirect registration framework is not satisfying when
the grey-scale values of the template image are not correct. There would also be a problem
with temporal data if a structure appears at a certain moment. In order to improve
our reconstruction method, it will then be necessary to mix it with the metamorphosis
framework.
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A Algorithm

The algorithm that we computed and used to obtain the numerical results of Section 5
is available at 2. It is implemented in a more generic context than the one presented here,
in particular deformation modules that are not constrained translations generator ones
can be used. Therefore we will not detail here the implementation, as it involves concepts
and notation that are not introduced in this article. It is implemented in Python and relies
on the class of objects DeformationModules. It uses the Operator Discretization Library
(ODL) 3 in order to define discretized images and vector fields.

A.1 Deformation modules

An abstract class DeformationModule is defined with several functions, in particular
the field generator ζ and the cost. CTG modules form a particular sub-class named Trans-
lationBased. In the implementation we simplify slightly the definition of CTG module by
defining the cost by c : (o, h) 7→ h2. Doing this we simplify the operator Co : H 7→ H which
becomes the Identity operator. Theoretically the UEC condition is no longer satisfied, this
could lead to pathological trajectories such as non integrable time-varying vector fields.
However, as long as the points forming the geometrical descriptors do not converge to each
others during the minimization, the UEC condition is still satisfied because the norm of
the generated vector field can be lower bounded with the norm of the control. As we do
not observe such a convergence in practice, we can keep this simplified control.

2https://github.com/bgris/ConstrainedIndirectRegistration
3https://github.com/odlgroup/odl
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A.2 Functional computation

The constrained indirect registration consists in the minimization of the functional (5)
with respect to the initial geometrical descriptor a ∈ O and the initial momentum η ∈
(Rn)m. A first step is to compute this functional. As the computation of the regularization
terms (a, η0) ∈ O × (Rn)m 7→ γR1(a) + τR2(η) is straightforward, we concentrate here on

the computation of the attachment term (a, η0) ∈ O× (Rn)m 7→ D(T (ϕ
ζo(h)
t=1 · I0, d)2 where

D is the L2 distance on the range of the operator T . The only difficult step here is to

compute the transported image ϕ
ζo(h)
t=1 · I0. This is done by integrating (4) via an Euler

scheme and transporting simultaneously the template image, see the sketch in Algorithm 1.
In the particular case of a deformation module obtained by combination of CTG modules,
the complexity of this forward integration is O(Nmp2) with m the total numbers of points
forming the compound geometrical descriptor and p2 the number of pixels of the image.

Algorithm 1 Computation of ϕ
ζo(h)
t=1 · I0.

Require: N . time step for integration
Require: I0 . Initial template
Require: a, η0 . Initial geometrical descriptor and momentum
1: I = I0, o = a, η = η0 . Initialization
2: for i = 1, . . . , N do
3: h← h∗ . See Equation (4)
4: η ← η − 1

N ∂oH(o, η, h∗) . See Equation (4)
5: v = ζo(h∗)
6: o← o+ 1

N v · o
7: I ← I ◦ (Id− 1

N v)
8: end for
9: return I

A.3 Gradient computation

As previously, the gradient of the regularization terms (a, η0) ∈ O×(Rn)m 7→ γR1(a)+
τR2(η) is straightforward but the gradient of the attachment term (a, η0) ∈ O× (Rn)m 7→
D(T (ϕ

ζo(h)
t=1 · I0, d)2 requires explanations. We use a forward-backward scheme based on

the following result which is a simplified version of the more general principle (see for
instance [3]):
Proposition 8. Let p ∈ N, f : Rp 7→ Rp a Cj vector field with j ≥ 1 and G : q0 ∈ Rp 7→
S(q(t = 1)) with S : Rp 7→ R C1, q : [0, 1] 7→ Rp defined by q(t = 0) = q0 and

d

dt
q(t) = f(q(t)) . (6)

Then for all q0 ∈ Rp, ∇G(q0) = Z(0) where Z : [0, 1] 7→ Rp is defined by Z(1) = ∇S(q(t =
1)) and

d

dt
Z(t) = df(qt)

TZ(t) (7)

This is called a forward-backward scheme because it consists in a forward step where
Equation 6 is integrated, then the variable Z is initialized at Z(1) = ∇S(q(t = 1)) and
integrated backward following Equation 7. The computation of df(q(t))T can be quite
hard in practice but it is shown in [3] that if p = 2p1 and if there exists H : q 7→ R
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such that we can write for q = (o, η) ∈ Rp1 × Rp1 , f(q) = (∇ηH(o, η),−∇oH(o, η)),

then for Z = (Z1, Z2) ∈ Rp1 × Rp1 , df(q(t))TZ = d
(
∇H

)
(o, η) · (−Z2, Z1) which can be

approximated by finite differences.
We apply these results on a discretization of O× (Rn)m ×L2(Ω,R), with the function

f defined in the Algorithm 1. We are currently working on a new implementation of the
gradient evaluation using automatic differentiation.

B Summary of notation

Notation Signification

n Dimension of the ambient space and the images (2 or 3)
Diff `0(Ω) Space of diffeomorphisms (see Section 2.3)
C`0(Ω,Rn) Space of vector fields (see Section 2.3)

T Forward operator
X Space of images (reconstruction space)
Y Data space
d data
φ Diffeomorphism
v vector field
ϕv Flow of v (see Equation (1))
Kσ Scalar Gaussian kernel of scale σ (see Section 3.1)
M Deformation module
O Space of geometrical descriptors
o Geometrical descriptor
H Space of controls
h Control
h∗ Geodesic control (see Equation (4))
ζ Field generator
c Cost
η Momentum (see Equation (4))
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